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Propagation of collective modes in liquid cesium
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The dynamical structure fact@®(q,w) of liquid cesium near its melting point is evaluated by using Mori’s
memory function formalism. For the calculation of the memory function we have proposed a self-consistent
method based on expressing the third-stage memory function in terms of the scaled second-order memory
function. The short-time properties 8{q,w) are exactly incorporated by the use of frequency sum rules up to
sixth order, whereas its long-time property is fixed through the scaling parameter. It is found that our approach
predicts the collective density excitation peak3ft, ») for q<1.2 A™! at a frequency that is in agreement
with experimental results, though with an overestimated peak heighF&r8 and 2.0 A* we again found
a w#0 peak and a shoulder &g, w), respectively. In this region, experimentally, only a shoulder has been
seen[S1063-651X96)00512-0

PACS numbeps): 61.25.Mv, 51.10+y, 05.20.Dd

I. INTRODUCTION modes beyond),. However, a slight shoulder has been ob-
served by them for 189<1.9 A~ Therefore, theoretical
The dynamical structure fact@®(q,w) of fluids plays a analysis ofS(q,w) beyondg>q, is very much desirable as
key role for the study of dynamics of the fluid. In the hydro- has also been stressed by Kambayashi and Kabhl.
dynamic region(q<0.1 A™") S(q,w) consists of a central  Therefore, in the present work we study the dynamical
peak at frequency=0 and two side peaksound modesat  structure factor using the framework, which includes all the
w#0. In the region beyond the hydrodynamic, the side pea'fength and time scales, based on memory funthﬁ) for-
in S(q,w) was also observed by performing neutron inelasticmalism. This formalism reduces the problem of evaluation of
scattering experiments in liquid Rd] about two decades the time correlation function to the calculation of its appro-
ago. The question whether sound modes exist in liquidgriate MF. The calculation of MF is equally involved as the
where these are not directly observable as side peaks @alculation of the time correlation, yet it has an advantage as
S(q,w) has been addressed in many research pd@ef.  one can propose some simple approximations for the MF and
The accurate neutron scattering experiment done for Ar itan still preserve a number of properties of the original time
1983 by Scheppest al{4] has shown, by expressii®{q,w)  correlation function. In the simplified description for the cal-
as a sum of three Lorentziafsne extended heat mode and culation of the MF there are at least two ways. First: one can
two extended sound modesp to q=4.0 A™%, that sound  propose phenomenological forms of the MF, like, Gaussian,
modes exist even though a distinct peak was not visible fronmyperbolic secant, etc. with its parameters determined from
the S(q,w) curves. This implies that absence of a distinctthe sum rules. We have earlier used this approach to study
side peak inS(q,») does not mean the absence of sounds(q,w) of liquid Al, Ar, and Cs[12—14. Our approach pre-
modes. But Lovese}5] argues that their prediction may be dicts collective density excitatior(®elow q,) in the systems
an artifact of their analysis and suggests that the descriptiofke Al and Cs whereas it does not provide the0 peak in
of S(q,w), by a sum of three Lorentzians, should only be Ar that are in agreement with computer simulation and/or
valid belowq=0.3 A™. To examine this problem McGreevy experimental results. This method has not provided any evi-
and Mitchell [6] proposed a semiempirical model for the dence of collective modes beyondq,. The second simple
extension of hydrodynamics to viscoelastic region and hav@pproach[15,16] can be put as equivalent to writing the
predicted the existence of sound modes in Ar and Rb with &igher-order MF, in continued fraction representation, in
possibility of a dispersion gap. In recent yefr$ a neutron  terms of its lower-order MF. In the present work we modify
scattering experiment has been done on liquid Cs just abougis scheme by introducing the scaling of time. The scaling
the melting point by Bodensteinet al. at Grenoble to study parameter is determined so as to satisfy the long-time prop-
in detail its dynamical properties. The main features of theitlerty of the correlation function. This results into a self-
study are as follows(1) there exists a#0 peak inS(q,»)  consistent formalism for the evaluation of the MF. Our ex-
for q<1.2 A™Y, (2) near the maximum ofS(q), i.e., at pression obtained foB(q,») exactly satisfies its sum rules
0o=1.4 A7, the well-known de Gennes narrowing is clearly up to sixth order. Results obtained f&q,w) of Cs for
observed. These results are not very different from earlief.5<q=<2.4 A~ have been compared with neutron scattering
studied systems like RfL], Al [10], and Pb[8,9]. But in  data[7]. It is found that our approach predicts the collective
addition to these features their analysis has shown the existlensity excitation peak fay<1.2 A at a frequency that is
ence of collective modes foq>q,, which appears as a in agreement with experimental results, though with an over-
shoulder in S(q,w) for 1.8<q<2.0 A"l Recently estimated peak height. Far=1.8 and 2.0 A! we again
molecular-dynamics simulations by Kambayashi and Kahfound a peak and a shoulder 8fq,»), respectively. In this
[11] have also addressed this question and claimed that theegion experimentally only a shoulder has been seen.
cannot find sufficient evidence for the propagation of sound We have also studied in detail the behavior of the first-
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and second-order MF of the density autocorrelation function. M,(q,t)= <A(q,0)exp[b(1— p)]LtA(q,o»’ (8)
A criteria has also been fixed for the existence of sound
modes in liquids. whereA(q,t) is the dynamical variable arfd is the projec-

The layout of the paper is as follows. In Sec. Il we presentjon operator. This framework though does not provide a
theory. Results and discussion are presented in Sec. lll. Th@ethod to solve the many-body problem, yet it has the ad-

work is concluded in Sec. IV. vantage that one can introduce approximations to evaluate
the MF instead of for the correlation function itself. Using
Il. THEORETICAL FORMALISM the projection operator technique used in deriving Ej.

one can extend the formalism that will include more exact

. _ _ . o properties(sum rules of the correlation function. This, in
Consider a classical system Nf particles in equilibrium  Fourier-Laplace space, provides

interacting via a central potentidl(r). The intermediate
scattering function is defined as M, (q,t=0)
n il

|\’\/l’n(qi‘l’): -

A. Generalities

(€)

N -~ L]
1 w+M,;1(0,0)
F(q,t)= N E (e‘q'riLe"q'rj>, 1) _ n+
b whereM (q,®) is the Fourier-Laplace transform ath or-
whereL is the Liouville operator and is the position of the ~d€r MF,M(q,t). M(q,t=0) is related to the sum rules of
ith particle. The angular brackets denote an equilibrium enthe F(a,t) up to second order.

semble average at temperatdrand densityp=N/V with V There exist microscopic methods for the evaluation of the
the volume of the system. The Fourier transform of @jis lower-order MF. The first, which is based on the generaliza-
the dynamical structure fact®(q, w) tion of kinetic equation§17,1§ for arbitrary wavelength and

frequency, was not tractable for the system of the present
1 (= interest. The mode couplinfl9] (multiparticle collision
S(q,0)=5— J e'F(q,bdt, method can be used for such a system if the binary collision
” contribution to the longitudinal current correlation function
1 (= is known. Attempts have been mad,21] to determine the
== fo cogwt)F(q,t)dt. (20 binary collision contribution microscopically but this has not
yet been numerically studied for arbitrary wavelength and
frequency.
On the other hand, there exist some simplified methods by
2n(q) Joc the use of which one can predict the microdynamics of the
w(q)=

For a givenq the frequency moments are defined as

0?"S(q,0)dw. (3)  system fairly well. One such method is based on choosing a
” phenomenological form of the MF, like Gaussian or hyper-

One of the theoretical frameworks that can incorporate alPPlic secant functions, etc. This method provides reasonable
the length and time scales is based on Mori’s memory funcgescrlpn_ons _of atomic dynamics and_ transport phenomena
tion formalism. In this formalism the time evolution of [22—24 in fluids. The second method is based on the repre-

PR sentation of a higher-order MF as a linear combinations of its
F(a.t) Is given as lower-order MF’s has also been employldd] to study the
t dynamics of the system. This method provides a way of clos-
+f F(q,7)My(t—7)d7=0. (4)  ing the continued fraction and yields a MF as a solution of
0 nth (n=2) degree equation. In the present work we propose
modification of such an approach and it will yield a self-
consistent solution for the MF.

JF(q,1)
at

In terms of the Fourier-Laplace transform defined as

f(w)= Lfo dt expleot) (1), 5 B. Self-consistent formalism
i It is known from hydrodynamics that three variables, like
one finds that local density, local momentum density, and local energy
density, which appear implicitly ir~(q,t), M(q,t), and
E(q,w): _ F~(q,0) . 6) M>(q,t), are enough to study the dynamics of the system.
w+M;(q,0) Therefore, higher-order MF’s, if expressed in these three

variables, may be a useful description in describing the mi-
From Egs.(2) and(5) the dynamical structure fact®(q,o)  crodynamics of the system. So in the present work we pro-
is given as pose

1

E M(g,t) =AMx(q, at), 10
S(g,0)= — IM[F(q,0)]. @) 3(a,t) 2(g,at) (10)

whereA and « are two parameters. Obviously from normal-
Now the problem of calculation of the scattering function for ization
arbitrary wavelength and frequency reduces to the evaluation
of the corresponding MM 4(q,t), which is defined as A=M3(q,t=0)/M,(q,t=0)=85/5,,
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where 6, and §; are given by the following relations: choice will set the intermediate time or frequency behavior
5 5 as interpolated values by means of a self-consistent evalua-
S=wi(q)= 61, 6,=0q7kgT/m«Qq), tion of M,(q,w) from Eq. (12). Writihg M,(q,®)
=Mj(g,w)+ tM%(g,w); M5 andM} are real and imaginary
—_ro4 4 2\, W 2 2 2
53=[Q2/(q)~ w/(q)]/ 5. parts ofM,(qg,w). We obtain from Eqs(6), (7), and(9) an

In these equations 2(q) and( {(q) are second- and fourth- expression foiS(q, ») given as

frequency sum rules of the longitudinal current-current cor- (217 Pk TMA( @)/m

relation function, respectively. Equatiofi0O) in Fourier- g _ 13
Laplace space provides (a,) [w®= 81+ wM)(q,0)]*+[wM)(g,0)]* a3
~ A= The real and imaginary parts M,(q,w) from Eq.(12) are
Ms(Q,0)= 7 Ma(q, 0/ a). @D obtained as
When Eq.(11) is substituted in Eq(9) with n=2, we obtain A
55f w+ - Mé(q,w/a)]
~ - 5 ! = —
Mz(q,w)= 2 . (12) Mz(q1w) A , 2 A , 2
A ~ o+ —M5(q,0/a)| +|— M5(q,0/a)
w+— My(q,0/a) a a
a (14

The above equation is a quadraticMy, if a=1. If a#1 it A
can be solved self-consistently. The parametean be cal- 52[ — M3(q,w/ a)}
culated from the knowledge of known short- or long-time M(0, )= @
properties of the system. Since, up to sixth sum rules are

2 2

A M5 /
o V2 q,0/a)

A M., /
w+; 5(q,w/a)

. . . . . +
exactly incorporated in the formalism, we will later fixby
a known long-time property of the correlation function. This (15
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(b)

The two equations can be solved self-consistently Nby
andM3. From Eq.(13) for «=0 we obtain

_ (2/m)g’kgTM5(q,0)/m

1
Equation(15) for »=0 provides
52(1 1/2
Mg(q,O)z[?] with A=8,/5,. (17)
3
Equations(16) and (17) then determine
75(q,0085m) 2 5,
| TaqheT | B (18

The experimental value &(q,0) will be used to calculate.
Once the M;(q,0) and M5(q,w) are estimated, the
Mi(q,0) and M’(q,w) can easily be calculated. The
M1(g,t) and M,(q,t) can be obtained from the expression
given as

2 o9
Mn(q,t)=; fo cofwt)M(q,0)dw. (19

14

In Sec. Il we use the scheme proposed in this section for the
evaluation of the dynamical structure factor of liquid Cs at
its melting point.

Ill. RESULTS AND DISCUSSION

For the calculation of the second-order NiF,(q,t) and
henceS(qg,w), we requirew2(q), Q(q), and S(q,0) as
inputs. The numerical results far(q) and(Q }(q) are taken
from our earlier work[14] for Cs calculated by using the
Price-Singwi-Tosi potentia[25] and corresponding radial
distribution function obtained by using the molecular-
dynamics method26]. The calculations have been made for
Cs at its melting poin{T=308 K and densityp=0.0083
A73). For S(q,0) we have used the experimental results of
Bodensteineret al. The values of the scaling parameter
obtained from Eq(18) are given in Table | for a few values
of g. It is found thata is always greater than one. A self-
consistent solution of Eq$14) and (15) is obtained to cal-
culateM;(q,w) and M3(g,w). It is noted that final results
do not depend on its initial guess, and the solution is ob-
tained after about 20 iterations with a tolerance of 20
Here, it may be noted that if we make the approximafigg.
(10)] at one stage earlier, i.e., at tMg, level, then the scal-
ing parameter is found to be less than one exceptatl.2
and 1.6 A1, whereS(q,w) decays monotonically. Far<1
it is very difficult to achieve a self-consistent evaluation of
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M,(q,w). However, forq=1.2 and 1.6 A! the results ob- quency dependence of real and imaginary partsiefqg, )
tained are quite similar to those obtained by using @G).  for q=0.5, 1.2, 1.8, and 2.4 &. It can be seen from Fig. 2
Therefore, in the present work we have used the procedumhat Mj(q,w) decays monotonically withw whereas
developed in Sec. Il. Results are obtained $6q,») from  M)(q,») shows a minimum. The minimum is the most pro-
Eq. (13), by using the self-consistently obtainddi;(q,@)  nounced atg=0.5, where the collective density excitation
and M%(q,w) for various values of wave vector ranging peak inS(q,w) has a maximum height. This minimum al-
from q=0.5 to 2.4 A'! and are compared with experimental most flattens atj=1.2 A~* and reappears at=1.8 A~ and
data in Figs. a) and 1b). It is clear from the figures that our then finally flattens forg=2.4 A"1. Thus, it clearly shows
self-consistent method predicts the collective density excitathat the collective density excitation peak$6q, w) appears
tion peaks inS(q,w) for liquid Cs forq<1.0 A" and a  whenever there is a strong minimum Mj(q,®). Results
shoulder atgq=1.1 A~ with their positions in reasonable gptained for the frequency dependence Mﬁ(q,w) and
agreement with the experimental data. However, the peafy”(q,w) are shown in Fig. 3. It can be seen from Fig. 3 that
height is overestimated. For=1.2 to 1.6 A the collective at q=0.5 AL there is a strong peak iM’(q,®) around
density excitation peak disappears, which is also in agree;_3 g5 psl This peak vanishes 31:1.21 A’—l appears
ment with the experimental data. At=1.8 A! the peak '

again appears with a shouldergt-2.0 A" In this region TABLE . Values of @ and 8, (10?* sec ?) for various values
experimentg 7] and computer simulations obtained by using ¢ q.

the Ashcroft pseudopotentifil1] predict only a shoulder at

q=1.8 AL The clear-cut peak observed in the present case q A o 8 5 55
atq=1.8 A lis due to the overestimation of the peak height,
which in this case is advantageous as propagation of sound 0-5 11.3676 15.0511 12.2079 27.6222
modes can now be seen clearly as a side peaR(inw) 0.9 5.5275 20.5329 17.7171 47.7775
beyondg>q,. These findings suggest the possibility of the 1.1 2.9005 10.6932 19.4838 51.8657
existence of a dispersion gap, which in this case is for 1.2 2.2148 5.5932 20.0788 53.8916
1.2=q=<1.38 AL 1.6 2.0797 4.5456 22.9664 56.7315
In order to understand the reason for the origin of the 1.8 4.4291 10.1994 26.8316 56.2541
collective excitations belowg=1.0 A and beyondj=1.8 2.0 2.4865 12.8866 32.7514 58.1926
A~! we have studied the behavior of MR8, and M, with 24 1.8711 10.5284 42.5256 74.1244

frequency and time. In Fig. 2 we present results for the fre
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again at 1.8 A%, and finally disappears fa;=2.4 A™%. For  or hybridizations of two phonons, which will be a subject of
q=0.5 A%, M}(q,w) first increases withw then shows a future study.

negative minimum aroundv=4 ps % This behavior of

M1(g,@) changes with increase iy, i.e., initial increase in

it disappears aften=0.9 A~. But it appears again at=1.8 IV. CONCLUSION
A~1 and then finally disappears for=2.0 A™L. The behav-
ior of M1(q,®) and hence oM;(q,w) is quite similar to In this paper we have studied the dynamical structure fac-

what has been obtained using mode-coupling theory for Afor of liquid cesium near its melting point by using Mori's
[27] except that peak heights here are more, which may bgemory function formalism. For the evaluation of the MF
due to a change in the system. _ _we proposed a scheme in which we express the third-stage
_ Itis also of interest to see the behavior of the MF With \ie i terms of the scaled second-order MF. The scaling
time. Therefore, we plo 1(q,t) andM,(q.1) in Fig. 4 fqr parameter is determined from the zero frequency dynamical
tzhzsgrge Kaél;isg fg;g]h'fcr gr:]helzirgsilttshg{e(g';’f%glg'gs' structure factor. Large frequency behavior is exactly incor-
monotor{ically with time whereas! (.q t) de?:ay,s in an (>)ls- p_orated by the_ use of frequency sum rulesSof, ) up to
cillatory manner. The behavior cmll(q',t) is like the solu- sixth order. Thl_s method has provided a self-con5|sten_t way
tion of a damped harmonic oscillator and damping increasegmdthe eve(ljluzitmn I\O/Ithhe MFI O:/erarlll tt)ihavtl)or of tge fus'; .
with an increase ing and is maximum forq=gq,. These &Nd S€cond-stage V- 1s Ssimilar to what has been observed in
the mode-coupling theory. Results obtained$6q, ) have

oscillations appear again at=1.8 A~! and become more ! \ X
damped with further increase in On studying the behavior been compared with experimental results. It is found that our

of a with g and the region in whict8(q,w) shows a side method predicts the collective density excitation peak for
peak, it is noted that for>>2.2 our calculations predict col- q<1.0 A~ that is in agreement with experimental results,
lective density excitations. Thus, the parameteacts like though the peak height is overestimated. For<ig1.6
the Gruinsion parameter determining anharmonicity in theA ~* the calculatedS(q,») does not have anw+0 peak in
system. Physically the reason for the existence of sound, which is, again, in agreement with experimental data. For
modes beyond =g, may be due to two bound-state phononq=1.8 A~ we found that the collective density excitation
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