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Propagation of collective modes in liquid cesium

Rajneesh K. Sharma and K. Tankeshwar
Centre of Advanced Study in Physics, Panjab University, Chandigarh 160014, India

~Received 2 May 1996!

The dynamical structure factorS(q,v) of liquid cesium near its melting point is evaluated by using Mori’s
memory function formalism. For the calculation of the memory function we have proposed a self-consistent
method based on expressing the third-stage memory function in terms of the scaled second-order memory
function. The short-time properties ofS(q,v) are exactly incorporated by the use of frequency sum rules up to
sixth order, whereas its long-time property is fixed through the scaling parameter. It is found that our approach
predicts the collective density excitation peak inS(q,v) for q,1.2 Å21 at a frequency that is in agreement
with experimental results, though with an overestimated peak height. Forq51.8 and 2.0 Å21 we again found
a vÞ0 peak and a shoulder inS(q,v), respectively. In this region, experimentally, only a shoulder has been
seen.@S1063-651X~96!00512-0#

PACS number~s!: 61.25.Mv, 51.10.1y, 05.20.Dd
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I. INTRODUCTION

The dynamical structure factorS(q,v) of fluids plays a
key role for the study of dynamics of the fluid. In the hydr
dynamic region~q,0.1 Å21! S(q,v) consists of a centra
peak at frequencyv50 and two side peaks~sound modes! at
vÞ0. In the region beyond the hydrodynamic, the side p
in S(q,v) was also observed by performing neutron inelas
scattering experiments in liquid Rb@1# about two decades
ago. The question whether sound modes exist in liqu
where these are not directly observable as side peak
S(q,v) has been addressed in many research papers@2–7#.
The accurate neutron scattering experiment done for A
1983 by Schepperet al.@4# has shown, by expressingS(q,v)
as a sum of three Lorentzians~one extended heat mode an
two extended sound modes! up to q54.0 Å21, that sound
modes exist even though a distinct peak was not visible fr
the S(q,v) curves. This implies that absence of a distin
side peak inS(q,v) does not mean the absence of sou
modes. But Lovesey@5# argues that their prediction may b
an artifact of their analysis and suggests that the descrip
of S(q,v), by a sum of three Lorentzians, should only
valid belowq50.3 Å21. To examine this problem McGreev
and Mitchell @6# proposed a semiempirical model for th
extension of hydrodynamics to viscoelastic region and h
predicted the existence of sound modes in Ar and Rb wit
possibility of a dispersion gap. In recent years@7# a neutron
scattering experiment has been done on liquid Cs just ab
the melting point by Bodensteineret al.at Grenoble to study
in detail its dynamical properties. The main features of th
study are as follows:~1! there exists avÞ0 peak inS(q,v)
for q,1.2 Å21, ~2! near the maximum ofS(q), i.e., at
q051.4 Å21, the well-known de Gennes narrowing is clear
observed. These results are not very different from ear
studied systems like Rb@1#, Al @10#, and Pb@8,9#. But in
addition to these features their analysis has shown the e
ence of collective modes forq.q0, which appears as a
shoulder in S(q,v) for 1.8,q,2.0 Å21. Recently
molecular-dynamics simulations by Kambayashi and K
@11# have also addressed this question and claimed that
cannot find sufficient evidence for the propagation of sou
551063-651X/97/55~1!/564~8!/$10.00
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modes beyondq0. However, a slight shoulder has been o
served by them for 1.6,q,1.9 Å21. Therefore, theoretica
analysis ofS(q,v) beyondq.q0 is very much desirable a
has also been stressed by Kambayashi and Kahl.

Therefore, in the present work we study the dynami
structure factor using the framework, which includes all t
length and time scales, based on memory function~MF! for-
malism. This formalism reduces the problem of evaluation
the time correlation function to the calculation of its appr
priate MF. The calculation of MF is equally involved as th
calculation of the time correlation, yet it has an advantage
one can propose some simple approximations for the MF
can still preserve a number of properties of the original ti
correlation function. In the simplified description for the ca
culation of the MF there are at least two ways. First: one c
propose phenomenological forms of the MF, like, Gaussi
hyperbolic secant, etc. with its parameters determined fr
the sum rules. We have earlier used this approach to s
S(q,v) of liquid Al, Ar, and Cs@12–14#. Our approach pre-
dicts collective density excitations~belowq0! in the systems
like Al and Cs whereas it does not provide thevÞ0 peak in
Ar that are in agreement with computer simulation and
experimental results. This method has not provided any
dence of collective modes beyondq.q0. The second simple
approach@15,16# can be put as equivalent to writing th
higher-order MF, in continued fraction representation,
terms of its lower-order MF. In the present work we modi
this scheme by introducing the scaling of time. The scal
parameter is determined so as to satisfy the long-time p
erty of the correlation function. This results into a se
consistent formalism for the evaluation of the MF. Our e
pression obtained forS(q,v) exactly satisfies its sum rule
up to sixth order. Results obtained forS(q,v) of Cs for
0.5<q<2.4 Å21 have been compared with neutron scatter
data@7#. It is found that our approach predicts the collecti
density excitation peak forq,1.2 Å21 at a frequency that is
in agreement with experimental results, though with an ov
estimated peak height. Forq51.8 and 2.0 Å21 we again
found a peak and a shoulder inS(q,v), respectively. In this
region experimentally only a shoulder has been seen.

We have also studied in detail the behavior of the fir
564 © 1997 The American Physical Society
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55 565PROPAGATION OF COLLECTIVE MODES IN LIQUID CESIUM
and second-order MF of the density autocorrelation functi
A criteria has also been fixed for the existence of sou
modes in liquids.

The layout of the paper is as follows. In Sec. II we pres
theory. Results and discussion are presented in Sec. III.
work is concluded in Sec. IV.

II. THEORETICAL FORMALISM

A. Generalities

Consider a classical system ofN particles in equilibrium
interacting via a central potentialU(r ). The intermediate
scattering function is defined as

F~q,t !5
1

N (
i , j

N

^eiq•r iLe2iq•r j&, ~1!

whereL is the Liouville operator andr i is the position of the
i th particle. The angular brackets denote an equilibrium
semble average at temperatureT and densityr5N/V with V
the volume of the system. The Fourier transform of Eq.~1! is
the dynamical structure factorS(q,v),

S~q,v!5
1

2p E
2`

`

eivtF~q,t !dt,

5
1

p E
0

`

cos~vt !F~q,t !dt. ~2!

For a givenq the frequency moments are defined as

v2n~q!5E
2`

`

v2nS~q,v!dv. ~3!

One of the theoretical frameworks that can incorporate
the length and time scales is based on Mori’s memory fu
tion formalism. In this formalism the time evolution o
F(q,t) is given as

]F~q,t !

]t
1E

0

t

F~q,t!M1~ t2t!dt50. ~4!

In terms of the Fourier-Laplace transform defined as

f̃ ~v!5iE
0

`

dt exp~ivt ! f ~ t !, ~5!

one finds that

F̃~q,v!52
F~q,0!

v1M̃1~q,v!
. ~6!

From Eqs.~2! and~5! the dynamical structure factorS(q,v)
is given as

S~q,v!5
1

p
Im@ F̃~q,v!#. ~7!

Now the problem of calculation of the scattering function f
arbitrary wavelength and frequency reduces to the evalua
of the corresponding MFM1(q,t), which is defined as
.
d

t
he

-

ll
-

n

M1~q,t !5^Ȧ~q,0!exp@i~12P!#LtȦ~q,0!&, ~8!

whereA(q,t) is the dynamical variable andP is the projec-
tion operator. This framework though does not provide
method to solve the many-body problem, yet it has the
vantage that one can introduce approximations to evalu
the MF instead of for the correlation function itself. Usin
the projection operator technique used in deriving Eq.~4!
one can extend the formalism that will include more ex
properties~sum rules! of the correlation function. This, in
Fourier-Laplace space, provides

M̃n~q,v!52
Mn~q,t50!

v1M̃n11~q,v!
, ~9!

whereM̃n(q,v) is the Fourier-Laplace transform ofnth or-
der MF,Mn(q,t). Mn(q,t50) is related to the sum rules o
theF(q,t) up to second order.

There exist microscopic methods for the evaluation of
lower-order MF. The first, which is based on the generali
tion of kinetic equations@17,18# for arbitrary wavelength and
frequency, was not tractable for the system of the pres
interest. The mode coupling@19# ~multiparticle collision!
method can be used for such a system if the binary collis
contribution to the longitudinal current correlation functio
is known. Attempts have been made@20,21# to determine the
binary collision contribution microscopically but this has n
yet been numerically studied for arbitrary wavelength a
frequency.

On the other hand, there exist some simplified methods
the use of which one can predict the microdynamics of
system fairly well. One such method is based on choosin
phenomenological form of the MF, like Gaussian or hyp
bolic secant functions, etc. This method provides reason
descriptions of atomic dynamics and transport phenom
@22–24# in fluids. The second method is based on the rep
sentation of a higher-order MF as a linear combinations of
lower-order MF’s has also been employed@15# to study the
dynamics of the system. This method provides a way of cl
ing the continued fraction and yields a MF as a solution
nth ~n>2! degree equation. In the present work we propo
modification of such an approach and it will yield a se
consistent solution for the MF.

B. Self-consistent formalism

It is known from hydrodynamics that three variables, li
local density, local momentum density, and local ene
density, which appear implicitly inF(q,t), M1(q,t), and
M2(q,t), are enough to study the dynamics of the syste
Therefore, higher-order MF’s, if expressed in these th
variables, may be a useful description in describing the
crodynamics of the system. So in the present work we p
pose

M3~q,t !5AM2~q,at !, ~10!

whereA anda are two parameters. Obviously from norma
ization

A5M3~q,t50!/M2~q,t50!5d3 /d2 ,
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whered2 andd3 are given by the following relations:

d25v l
2~q!2d1 , d15q2kBT/ms~q!,

d35@V l
4~q!2v l

4~q!#/d2 .

In these equationsv l
2(q) andV l

4(q) are second- and fourth
frequency sum rules of the longitudinal current-current c
relation function, respectively. Equation~10! in Fourier-
Laplace space provides

M̃3~q,v!5
A

a
M̃2~q,v/a!. ~11!

When Eq.~11! is substituted in Eq.~9! with n52, we obtain

M̃ 2~q,v!5
2d2

v1
A

a
M̃2~q,v/a!

. ~12!

The above equation is a quadratic inM2 if a51. If aÞ1 it
can be solved self-consistently. The parametera can be cal-
culated from the knowledge of known short- or long-tim
properties of the system. Since, up to sixth sum rules
exactly incorporated in the formalism, we will later fixa by
a known long-time property of the correlation function. Th
-

re

choice will set the intermediate time or frequency behav
as interpolated values by means of a self-consistent eva
tion of M2(q,v) from Eq. ~12!. Writing M̃2(q,v)
5M28(q,v)1iM29(q,v); M28 andM29 are real and imaginary
parts ofM̃2(q,v). We obtain from Eqs.~6!, ~7!, and~9! an
expression forS(q,v) given as

S~q,v!5
~2/p!q2kBTM29~q,v!/m

@v22d11vM28~q,v!#21@vM29~q,v!#2
. ~13!

The real and imaginary parts ofM2(q,v) from Eq. ~12! are
obtained as

M28~q,v!52

d2H v1
A

a
M28~q,v/a!J

Fv1
A

a
M28~q,v/a!G21FAa M29~q,v/a!G2 ,

~14!

M29~q,v!5

d2H Aa M29~q,v/a!J
Fv1

A

a
M28~q,v/a!G21FAa M29~q,v/a!G2 .

~15!
nt
FIG. 1. ~a! Variation of the dy-
namical structure factorS(q,v)
~ps! with v ~ps21! at different val-
ues of q. Solid lines are our re-
sults whereas squares represe
experimental results.~b! Same as
~a! but for different values ofq.
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FIG. 1 ~Continued!.
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The two equations can be solved self-consistently forM28
andM29 . From Eq.~13! for v50 we obtain

S~q,0!5
~2/p!q2kBTM29~q,0!/m

d1
2 . ~16!

Equation~15! for v50 provides

M29~q,0!5H d2
2a

d3
2 J 1/2 with A5d3 /d2 . ~17!

Equations~16! and ~17! then determine

a5H pS~q,0!d1
2m

2q2kBT
J 2 d3

d2
2 . ~18!

The experimental value ofS(q,0) will be used to calculatea.
Once the M28(q,v) and M29(q,v) are estimated, the
M18(q,v) and M19(q,v) can easily be calculated. Th
M1(q,t) andM2(q,t) can be obtained from the expressio
given as

Mn~q,t !5
2

p E
0

`

cos~vt !Mn9~q,v!dv. ~19!
In Sec. III we use the scheme proposed in this section for
evaluation of the dynamical structure factor of liquid Cs
its melting point.

III. RESULTS AND DISCUSSION

For the calculation of the second-order MFM2(q,t) and
henceS(q,v), we requirev l

2(q), V l
4(q), and S(q,0) as

inputs. The numerical results forv l
2(q) andV l

4(q) are taken
from our earlier work@14# for Cs calculated by using the
Price-Singwi-Tosi potential@25# and corresponding radia
distribution function obtained by using the molecula
dynamics method@26#. The calculations have been made f
Cs at its melting point~T5308 K and densityr50.0083
Å23!. For S(q,0) we have used the experimental results
Bodensteineret al. The values of the scaling parametera
obtained from Eq.~18! are given in Table I for a few value
of q. It is found thata is always greater than one. A sel
consistent solution of Eqs.~14! and ~15! is obtained to cal-
culateM28(q,v) andM29(q,v). It is noted that final results
do not depend on its initial guess, and the solution is
tained after about 20 iterations with a tolerance of 1025.
Here, it may be noted that if we make the approximation@Eq.
~10!# at one stage earlier, i.e., at theM1 level, then the scal-
ing parametera is found to be less than one except atq51.2
and 1.6 Å21, whereS(q,v) decays monotonically. Fora,1
it is very difficult to achieve a self-consistent evaluation
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FIG. 2. Variation of real partM28(q,v) ~solid
lines! and imaginary partM29(q,v) ~dotted lines!
of second-order memory function withv.
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M1(q,v). However, forq51.2 and 1.6 Å21 the results ob-
tained are quite similar to those obtained by using Eq.~10!.
Therefore, in the present work we have used the proced
developed in Sec. II. Results are obtained forS(q,v) from
Eq. ~13!, by using the self-consistently obtainedM28(q,v)
and M29(q,v) for various values of wave vector rangin
from q50.5 to 2.4 Å21 and are compared with experiment
data in Figs. 1~a! and 1~b!. It is clear from the figures that ou
self-consistent method predicts the collective density exc
tion peaks inS(q,v) for liquid Cs for q<1.0 Å21 and a
shoulder atq51.1 Å21 with their positions in reasonabl
agreement with the experimental data. However, the p
height is overestimated. Forq51.2 to 1.6 Å21 the collective
density excitation peak disappears, which is also in ag
ment with the experimental data. Atq51.8 Å21 the peak
again appears with a shoulder atq52.0 Å21. In this region
experiments@7# and computer simulations obtained by usi
the Ashcroft pseudopotential@11# predict only a shoulder a
q51.8 Å21. The clear-cut peak observed in the present c
atq51.8 Å21 is due to the overestimation of the peak heig
which in this case is advantageous as propagation of so
modes can now be seen clearly as a side peak inS(q,v)
beyondq.q0. These findings suggest the possibility of t
existence of a dispersion gap, which in this case is
1.2<q<1.8 Å21.

In order to understand the reason for the origin of
collective excitations belowq51.0 Å21 and beyondq>1.8
Å21 we have studied the behavior of MF’sM1 andM2 with
frequency and time. In Fig. 2 we present results for the
re

-

k

e-

e
,
nd

r

e

-

quency dependence of real and imaginary parts ofM̃2(q,v)
for q50.5, 1.2, 1.8, and 2.4 Å21. It can be seen from Fig. 2
that M29(q,v) decays monotonically withv whereas
M28(q,v) shows a minimum. The minimum is the most pr
nounced atq50.5, where the collective density excitatio
peak inS(q,v) has a maximum height. This minimum a
most flattens atq51.2 Å21 and reappears atq51.8 Å21 and
then finally flattens forq>2.4 Å21. Thus, it clearly shows
that the collective density excitation peak inS(q,v) appears
whenever there is a strong minimum inM28(q,v). Results
obtained for the frequency dependence ofM18(q,v) and
M19(q,v) are shown in Fig. 3. It can be seen from Fig. 3 th
at q50.5 Å21 there is a strong peak inM19(q,v) around
v53.65 ps21. This peak vanishes atq51.2 Å21, appears

TABLE I. Values ofa and dn ~1024 sec22! for various values
of q.

q ~Å21! a d1 d2 d3

0.5 11.3676 15.0511 12.2079 27.6222
0.9 5.5275 20.5329 17.7171 47.7775
1.1 2.9005 10.6932 19.4838 51.8657
1.2 2.2148 5.5932 20.0788 53.8916
1.6 2.0797 4.5456 22.9664 56.7315
1.8 4.4291 10.1994 26.8316 56.2541
2.0 2.4865 12.8866 32.7514 58.1926
2.4 1.8711 10.5284 42.5256 74.1244
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FIG. 3. Variation of real part
M18(q,v) ~solid lines! and imagi-
nary partM19(q,v) ~dotted lines!
of first-order memory function
with v.
A
b

ith

.

se

r

-

th
un
on

of

ac-
s
F
tage
ing
ical
or-

ay
t-
d in

our
for

ts,

or
n

again at 1.8 Å21, and finally disappears forq>2.4 Å21. For
q50.5 Å21, M18(q,v) first increases withv then shows a
negative minimum aroundv54 ps21. This behavior of
M18(q,v) changes with increase inq, i.e., initial increase in
it disappears afterq50.9 Å21. But it appears again atq51.8
Å21 and then finally disappears forq>2.0 Å21. The behav-
ior of M19(q,v) and hence ofM18(q,v) is quite similar to
what has been obtained using mode-coupling theory for
@27# except that peak heights here are more, which may
due to a change in the system.

It is also of interest to see the behavior of the MF w
time. Therefore, we plotM1(q,t) andM2(q,t) in Fig. 4 for
the same values ofq for which the results are given in Figs
2 and 3. It can be seen from Fig. 4 thatM2(q,t) decays
monotonically with time whereasM1(q,t) decays in an os-
cillatory manner. The behavior ofM1(q,t) is like the solu-
tion of a damped harmonic oscillator and damping increa
with an increase inq and is maximum forq5q0. These
oscillations appear again atq51.8 Å21 and become more
damped with further increase inq. On studying the behavio
of a with q and the region in whichS(q,v) shows a side
peak, it is noted that fora.2.2 our calculations predict col
lective density excitations. Thus, the parametera acts like
the Gruinsion parameter determining anharmonicity in
system. Physically the reason for the existence of so
modes beyondq>q0 may be due to two bound-state phon
r
e

s

e
d

or hybridizations of two phonons, which will be a subject
future study.

IV. CONCLUSION

In this paper we have studied the dynamical structure f
tor of liquid cesium near its melting point by using Mori’
memory function formalism. For the evaluation of the M
we proposed a scheme in which we express the third-s
MF in terms of the scaled second-order MF. The scal
parameter is determined from the zero frequency dynam
structure factor. Large frequency behavior is exactly inc
porated by the use of frequency sum rules ofS(q,v) up to
sixth order. This method has provided a self-consistent w
for the evaluation of the MF. Overall behavior of the firs
and second-stage MF is similar to what has been observe
the mode-coupling theory. Results obtained forS(q,v) have
been compared with experimental results. It is found that
method predicts the collective density excitation peak

q,1.0 Å21 that is in agreement with experimental resul
though the peak height is overestimated. For 1.2<q<1.6
Å21 the calculatedS(q,v) does not have anyvÞ0 peak in
it, which is, again, in agreement with experimental data. F
q51.8 Å21 we found that the collective density excitatio
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FIG. 4. Variation of normal-
ized memory functionM1(q,t)
andM2(q,t) with time t ~ps! for
different values ofq. Solid lines
are results forM1(q,t) and dotted
lines are results forM2(q,t).
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peak again starts appearing, which finally disappears
q>2.0 Å21. In this region~1.8<q<2.0 Å21! a shoulder has
been observed experimentally. This is an interesting
theoretical result obtained using Mori’s memory functi
formalism. Our investigation suggests the possibility
propagation of the collective mode beyond the wave num
corresponding to maximum in the static structure factor.
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